Energetics of plasmid-mediated arsenate resistance in Escherichia coli.
نویسندگان
چکیده
Plasmid R773, which codes for resistances to arsenate, arsenite, and antimony, was introduced into Escherichia coli strain AN120, a mutant deficient in the H+-translocating ATPase of oxidative phosphorylation. Cultures depleted of endogenous energy reserves were loaded with 74AsO3-4, and arsenate efflux was measured after dilution into medium containing various energy sources and inhibitors. Rapid extrusion of arsenate occurred when glucose was added. Arsenate was extruded both against and down a concentration gradient. In this strain glucose allows formation of both ATP via substrate-level phosphorylation and an electrochemical proton gradient (or protonmotive force) via oxidation of the products of glycolysis. When oxidation was inhibited by cyanide, glucose metabolism still produced arsenate efflux. Energy sources such as succinate, which supplies a protonmotive force but not ATP, did not result in efflux. Measurement of intracellular ATP concentration under each set of conditions demonstrated a direct correlation between the rate of efflux and ATP levels. Osmotically shocked cells lost the ability to extrude arsenate; however, no arsenate-binding activity was detected in osmotic shock fluid from induced cells. These results suggest that the arsenate efflux system is coupled to cellular ATP rather than an electrochemical proton gradient, possibly by an arsenate-translocating ATPase.
منابع مشابه
PCR Detection of Plasmid Mediated TEM, SHV and AmpC β-Lactamases in Community and Nosocomial Urinary Isolates of Escherichia coli
متن کامل
Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran
Objective(s) Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. Materials and Methods ...
متن کاملInducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus.
Plasmids in both Escherichia coli and Staphylococcus aureus contain an "operon" that confers resistance to arsenate, arsenite, and antimony(III) salts. The systems were always inducible. All three salts, arsenate, arsenite, and antimony(III), were inducers. Mutants and a cloned deoxyribonucleic acid fragment from plasmid pI258 in S. aureus have lost arsenate resistance but retained resistances ...
متن کاملEnergy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance.
Plasmid-mediated resistance to arsenate, arsenite, and antimony(III) is coordinately induced by arsenate, arsenite, antimony(III), and bismuth(III). Resistance to arsenate was recently shown [Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. & Rosenberg, H. (1981) J. Bacteriol. 146, 983-996] to be due to decreased accumulation of arsenate by t...
متن کاملTransformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance.
Acidiphilium multivorum AIU 301 isolated from acid mineral water had strong arsenic resistance. This bacterium harbored a number of plasmids with different molecular sizes. A plasmid of 56 kbp, named pKW301, was isolated from A. multivorum AIU 301. When pKW301 was transferred into Escherichia coli JM109 by electroporation, an E. coli transformant carrying pKW301 exhibited resistance to sodium a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 79 20 شماره
صفحات -
تاریخ انتشار 1982